
Physica 25D (1987) 261-287 
North-Holland, Amsterdam 

HAMILTONIAN DYNAMICS AND STABILITY ANALYSIS OF NEUTRAL 
ELECTROMAGNETIC FLUIDS WITH INDUCTION 

Darryl D. HOLM 
Center for Nonlinear Studies and Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Received 19 June 1986 
Revised manuscript received 15 September 1986 

The Lie-Poisson Hamiltonian structure of the special-relativistic electromagnetic fluid equations is derived. This Hamilto- 
nian structure provides synthesis and insight leading to new conservation laws and stability conditions for the equilibrium 
solutions. A corollary of the stability results generalizes Rayleigh's inflectional instability criterion for ideal incompressible 
fluids to the present case. Another alternative, Hamiltonian formulation of relativistic electromagnetic fluid dynamics is 
constructed systematically via Lie-algebraic considerations of the Poisson bracket. (In particular, relativistic magnetohydrody- 
namics emerges naturally from these considerations.) The nonrelativistic limits of these two formulations are also determined 
and are shown to be regular and to preserve the corresponding Lie-Poisson structures. 

1. Introduction 

Electromagnetic fluids (EMF) include inviscid, compressible, perfectly conducting, polarizable and 
magnetizable fluids, with generally nonlinear polarization and magnetization properties. Penfield and Haus 
[1, 2] derive the special relativistic equations and determine the total stress-energy tensor for EMF from a 
constrained variational principle. The Penfield-Haus variational principle leads to a covariant "Clebsch 
representation" of the EMF 4-momentum density (see also eq. (3.1)) of the general form 

M~,= - Y'.P(t)q!] ), #=0 ,1 ,2 ,3 ;  I c  {canonicalcoordinates}, (1.1) 
t 

where q!~)= O~,q ~I) = Oq(1)/Ox ~ denotes the partial derivative, and P(1) and q(1) in (1.1) are canonically 
conjugate fields obtained by passing via the usual Legendre transformations from the Penfield-Haus 
variational principle to the 3 + 1 Hamiltonian formulation of the EMF equations, expressed as a 
dynamical system in the laboratory Lorentz frame. 

Not all of the canonical Clebsch variables (P(1), q(t)) in (1.1) are physically significant. Indeed, the 
relation of ihese canonical variables to the physical momentum density is not even unique, due to the 
gauge freedom in (1.1). See Henyey [3] for a discussion of this Clebsch gauge freedom. The nonuniqueness 
can be eliminated and the connection to proper physical variables can be made as done in Holm and 
Kupershmidt [4] for nonrelativistic continuum theories by using the Clebsch relation (1.1) to map the 3 + 1 
Hamiltonian formulation in the laboratory frame from the larger space of canonically conjugate Clebsch 
variables to the smaller space of physical fluid variables. This results in a Poisson bracket that is not 
canonical in form, but is expressed solely in physical terms. As we shall discuss later (in section 5), the 

0167-2789/87/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



262 D.D. Holm / Neutral electromagnetic fluids with induction 

partition of the momentum density in (1.1) between matter and electromagnetic field is not uniquely 
defined for EMF. (This is the old Abraham-Minkowskii controversy.) This ambiguity will lead to 
physically equivalent, alternative, Hamiltonian formulations of EMF dynamics interrelated by Poisson 
maps, i.e., maps that preserve the values of Poisson brackets. In particular, relativistic magnetohydrody- 
namics will emerge naturally from EMF dynamics via such considerations of Poisson maps. 

The "Clebsch map" based on (1.1) also preserves the values of the Poisson brackets among the physical 
variables and is analogous to the map for the rigid body in classical mechanics, from the six-dimensional 
space of the Euler angles and their canonically conjugate momenta to the three components of angular 
momentum in the body satisfying noncanonical Poisson bracket relations associated to the dual of the Lie 
algebra su(2). See, e.g., Sudarshan and Mukunda [5] and Marsden et al. [6]. 

The present work constructs the noncanonical 3 + 1 Hamiltonian formulation for special relativistic 
EMF dynamics in the laboratory frame by using the Clebsch map derived from (1.1). 

The noncanonical Poisson bracket for EMF dynamics appearing via the Clebsch map (1.1) turns out to 
be associated naturally to the dual of a Lie algebra of semidirect product type. Such Lie algebras are 
present as a generic feature of ideal fluid dynamics. See, e.g., Holm and Kupershmidt [4] and various 
articles in Marsden [7]. For EMF, the first hint of this Lie algebraic structure appears in the differential- 
geometric formulation of the generalized Kelvin's Theorem, eq. (2.50), expressed in terms of Lie 
derivatives and differential forms. 

The semidirect-product Lie algebra associated to EMF dynamics has a nontrivial kernel; so the 
corresponding Poisson bracket possesses Casimirs, i.e., functionals C F containing an arbitrary function F 
and satisfying { C F, G } = 0 for every functional G in the space of physical variables. Of course, the 
Casimirs are conserved, i.e. 

=o, (1.2) 

since they Poisson commute with every physical fluid variable in the laboratory frame, and the Hamil- 
tonian H appearing in (1.2) depends only on these physical variables. As one could expect, conservation of 
the Casimirs in the space of physical variables corresponds via Noether's theorem to the symmetries of the 
Penfield-Haus constrained variational principle for EMF under Clebsch gauge transformations, i.e., 
canonical transformations leaving the Clebsch representation (1.1) invariant. 

Note that the Casimir conservation laws are robust, in the sense that they persist even when the original 
Hamiltonian in (1.2) is perturbed or altered arbitrarily, in the space of physical variables. 

Besides providing conservation laws and geometric or Lie algebraic insight, the Casimirs are conserva- 
tion laws that help characterize relative equilibrium states of the EMF equations. Namely, the EMF 
equilibria obeying a certain Bernoulli-type relation [given in eq. (4.6)] are critical points of the sum of the 
Hamiltonian, H, and the Casimirs, CF, the latter containing an arbitrary function F. This critical point 
property, 

=0, (1.3) 

associating the equilibrium states to particular Casimirs is useful in establishing Lyapunov stability criteria 
for the corresponding equilibria by the so-called energy-Casimir stability method. This stability method is 
a development of the well-known Lyapunov method that uses the Hamiltonian formalism and Casimirs to 
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construct the desired Lyapunov functionals for certain classes of equilibria; in particular, for those 
equilibria whose Bernoulli relation is expressible in explicit functional form, as in eq. (4.6). 

Holm et al. [8] provides examples of nonrelativistic stability analyses for various models of ideal 
compressible fluids and plasmas by this method, and Holm and Kupershmidt [9] presents the stability 
analysis of relativistic ideal plasma equilibria using the energy-Casimir method. Abarbanel and Holm [10] 
characterizes the entire set of fluid equilibria (not just the aforementioned Bernoulli equilibria) as critical 
states satisfying (1.3) under an extended class of variations, including variations of the Lagrangian 
coordinate functions (fluid particle labels). (See also Holm, Marsden, and Ratiu [11], Part II, for a 
discussion of this approach.) 

Various nonlinear, energy-conserving, approximations of EMF dynamics can be found by examining the 
Hamiltonian structures that are "nested" Lie-algebraically within the Hamiltonian structure for EMF. In 
particular, the relativistic dynamics and Hamiltonian structure for EMF can be specialized to the case of 
relativistic magnetohydrodynamics (MHD), by setting the magnetization and polarization to zero and 
using an alternative Poisson bracket for EMF obtained from the first one by a canonical (i.e., Poisson 
bracket preserving) map called the "entangling map". These two canonically equivalent Hamiltonian 
formulations of special-relativistic EMF (SREMF) also contain the following nonrelativistic models: the 
corresponding nonrelativistic version of EMF (see Holm [12]); the equations for nonrelativistic polarized 
fluids (with vanishing magnetization but nonzero polarization, which is possible for EMF in the 
nonrelativistic limit, see Calkin [3]); and nonrelativistic MHD. All of these nonrelativistic fluid plasma 
models derive from the regular limit of SREMF when c-2 tends to zero, with c denoting the speed of light. 

The general-relativistic extensions of EMF and MHD are also available in this context and have the 
same type of semidirect-product Lie-Poisson brackets, appearing in a direct sum with the canonical 
Poisson structure for the metric dynamics. The Hamiltonian structures for these general relativistic 
extensions can be constructed by applying either the methods of Ray [14] to modify the Penfield-Haus 
action principle, or those of Bao et al. [15] and Holm [16] to modify the present Hamiltonian formulation 
so as to include the dynamics of the space-like Riemannian metric and its canonically conjugate 
momentum field. 

Plan. Section 2 gives the special-relativistic EMF equations and defines notation. In particular, the 
Penfield-Haus variational principle is recalled and the EMF equations are derived from it in standard 
4-vector notation. Section 3 passes from the constrained variational principle of Penfield and Haus [1] to 
the Hamiltonian description of relativistic EMF dynamics in canonical Clebsch coordinates (PtI), q~1)), by 
employing a 3 + 1 spacetime split in the laboratory reference frame. Then we use the spatial part of the 
Clebsch map (1.1) in that reference frame to restrict the Hamiltonian description to physical fluid 
quantities. The resulting Poisson bracket in physical variables is shown to be associated to the dual of a 
certain semidirect-product Lie algebra. Dual coordinates and Casimirs for the Poisson bracket are 
identified in terms of physical variables. Section 4 discusses equilibrium conditions for the EMF equations. 
Equilibrium states are shown to correspond to critical points of the sum H + C F, with H the Hamiltonian 
and C F a Casimir containing an arbitrary function F. The Lyapunov stability of these equilibria is then 
investigated under the linearized dynamics. Section 5 derives several approximations of EMF dynamics in 
Hamiltonian form by considering special cases, canonical maps, and nonrelativistic limits of the Hamil- 
tonian structure for EMF given in section 3. 

This Hamiltonian approach with its resulting Lie-algebraic structure shows that ideal fluid 
dynamics-even relativistic fluid dynamics with electromagnetic induction-is essentially geometry in 
motion. 
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2. Fundamentals of special relativistic EMF 

2.1. Equations o f  motion and notation 

In Lorentz-covariant form, the special relativistic electromagnetic fluid (SREMF) equations are (Penfield 
and Hans [1], Lichnerowicz [17]) 

T{" = 0, (2.1a) 

(n'b~), ,  = 0, (2.1b) 

= 0, (2.1c) 
~ ' -  H~ - 0, (2.2a) 

F,{~= 0. (2.2b) 

The SREMF equations (2.1) and (2.2) consist of local conservation laws for energy-momentum (2.1a) 
and number of particles (2.1b), the adiabatic condition (2.1c) for dissipationless flow, and the Maxwell 
equations (2.2a, b) including induction for a polarizable, magnetizable medium. In these equations, Greek 
indices run from 0 to 3, repeated indices are summed, and partial derivatives are denoted with a subscript 
comma (,). Superscript prime ( ' )  denotes variables in the reference frame of a volume element moving with 
the fluid. For example, n'  denotes the number of particles per unit volume and s '  is the entropy per 
particle in the proper frame of the fluid (henceforth called the fluid frame). The quantity 5 v denotes the 
timelike fluid velocity 4-vector, which becomes 5 ° = c, bi = 0, i = 1, 2, 3, in the fluid frame (Latin indices 
run from 1 to 3) and satisfies 

g~5"5" = - c 2. (2.3) 

The metric tensor is given by the expression - d l  "2=  g , , d x ~ d x  ~ for the proper time interval, x ° =  ct 

being the real timelike coordinate. In the present work, we take g~, to be the Minkowskii metric, 
d i a g ( -  1,1,1,1) in the proper frame. 

In the laboratory frame, 5 ~ becomes 5 ° = To, Y = 7d, where d is the usual fluid velocity 3-vector and 
3, -2 = 1 - v2 /c  2, with v 2 = rio i. Laboratory frame quantities will be unadorned and related to their primed 
fluid-frame counterparts by the standard Lorentz transformation rules (see, e.g., Moller [18]). 

The quantity T ~ in (2.1a) is the energy-momentum tensor, given in the fluid frame by (Penfield and 
Haus [1]) 

ntmo c2 + e t 

L',= x n , ) ,  

c-l(E' x H ' ) '  

~ik (E '  "O '  + H "  " B '  + P ' )  

- D : E [ ,  - B [ H [ ,  

(2.4) 

where E '  is the electric field, D '  is the displacement vector, H '  is the magnetic field intensity, and B '  is 
the magnetic induction, all in the fluid frame. The quantity from (2.4) 

c - lT f i  = c - 2 (  E ' X H ' ) i  (2.5) 

is the Poynting vector, which is the momentum density for EMF in the fluid frame. The zero-zero 
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component  of the energy-momentum tensor in (2.4) 

T~o = n 'mo c2 -4- e', (2.6) 

is the proper internal energy density including the rest mass contribution, with m o the particle rest mass. 
Note  that e' contains contributions from both the particles and the electromagnetic fields. 

The energy density e' in (2.6) satisfies the following thermodynamic identity in the fluid frame: 

{ P ' + e ' ~  . , 
d e ' = e ' . d D ' + H ' . d n ' + ~ ] d n  + n ' O ' d s ' ,  (2.7) 

where 0 '  is the proper temperature and P '  is the total proper pressure, defined by 

p ,  , Oe' _ e'. (2.8) = n -~-7 

Contraction of (2.1a) with ~ contributes the Poynting relation for power balance. In the fluid frame this 
relation is 

[by (2.4)1 = 0 , ( , ' m o  c2 + ~" ) + d i v ' ( E '  X n ' / c  2) 

[by (2.7)] = E ' .  O,D' + H ' .  O ,B '  + rnoc2W O,n' + n'O'O,s '  + div'  (E' x H'/c2), (2.9) 

where w is the relativistic specific enthalpy, 

w = 1 + \ n 'mo  cz ]' (2.10) 

0, is the partial derivative with respect to proper time, ~-, and div'  is the divergence in the fluid frame. 
The representation of T~, in an arbitrary frame can now be found from (2.4) by using the standard 

Lorentz transformation laws (Moiler [18], §66), see also (2.41) below. 
The electromagnetic field tensor F~, is given by 

c-IF~, = A ~ , ~ -  A~,~, (2.11) 

where A t is the 4-vector potential. The antisymmetric tensor F,~ has electric and magnetic field 
components in the following form: 

0 E 1 E 2 E 3 . 

0 - c B  3 cB 2 

0 - c B  1 

0 

F . ,  = (2.12) 



266 D.D. Holm / Neutral electromagnetic fluids with induction 

The dual tensor flu, in (2.2b) is obtained from F~ in (2.12) by replacing E by - c B  and cB by E, 

0 - 0  cBx -- cB2 E 3 -E  2 cB3. 

0 - E 1 
0 

(2.13) 

The field tensor in the medium H ~ in (2.2a) is related formally to F~v by raising indices and replacing E 
by D and B by H / c  2, 

n t~v ~ 

0 - D  1 - D  2 - D  3 

0 -- n3 / / c  n 2 / / c  

0 - H1/c 
0 

(2.14) 

The Maxwell equations resulting from (2.2a, b) in 3-vector language using (2.13) and (2.14) are 

divD = 0, (2.15a) 

- OID + curl H = 0, (2.15b) 

divB = 0, (2.15c) 

OrB + curl E = 0, (2.15d) 

which have the same form in any Lorentz frame. Note that (2.15a, c) are preserved in time, by the 
divergences of (2.15b, d), respectively. Thus, divD = 0 and d i v B =  0 can be taken as nondynamical 
constraints, i.e., can be assumed as initial conditions that are subsequently preserved. 

2.2. Penfield-Haus variational principle 

The relativistic EMF equations (2.1a-d) follow from Hamilton's principle, 

as = f dt d3xL = 0, (2.16) 

where the constrained Lagrangian density L is a slight modification of that in Penfield and Haus [1] eq. 
(42), 

- X z F  X , . ,  L = Z o - ~F,~,- flV"s~, , z (2.17) 

with basic Lagrangian density 

L o = E '  "D' - n'rno c2 - e '(n' ,  s', O' ,  B ' ) ,  (2.18) 

and covariant particle flux density 

F ~ = n '~ ~. (2.19) 
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In (2.17), the Lagrange multipliers ~ and 13 impose upon the extremals of S the EMF subsidiary equations 
(2.1b) and (2.1c), respectively; while X x imposes the "4-vector Lin constraint," 

F " X ~ = O ,  2 = 0,1,2,3,  (2.20) 

on the trajectory of the fluid label X x. As a consequence of the thermodynamic identity (2.7) and the 
definitions (2.8) and (2.10), the quantity L 0 in (2.18) satisfies the variational relation 

8 L  o = D '  • B E '  - H ' .  8 B '  - n 'O'  S s '  - moc2w 8n ' .  (2.21) 

For covariant equations to result, variational formulas such as expression (2.21) for the Lorentz scalar 
density 8L o in the fluid frame need to be put into covariant form. The variations 8n', for example, depend 
on the velocity through the relation (2.3), or equivalently, 

~ '  = - c 2. (2.22) 

The variation of F" = n '6 ~ in (2.19) is 

8F ~ = n'8~ ~ + ~ 8n'. (2.23) 

Since (2.22) implies the variational formula 

~, 8~ ~ = 8 ( ~ / 2 )  = 0, (2.24) 

we have, upon contracting (2.23) with 6~ and using (2.22), 

8 n '  = - ( ~, 6 F  ~ ) / c  2. (2.25) 

Likewise, the variations BE' and 8B' in (2.21) depend on the velocity via the Lorentz transformation 
formulas (Stratton [19], sec. 1.23), 

E ' = E I I +  Y ( E  ± + v x B ) ,  

D'  =DLI+ y(D± + v ×  H / c 2 ) ,  

H '  = H,  + - / (H i - v  × D),  (2.26) 

s '  = nlj + v(  s~. - v  × E / c 2 ) ,  

where II and ± subscripts refer to components parallel and perpendicular to v, respectively. After a short 
calculation, eqs. (2.26) yield the variational relation (Penfield and Haus [1]) 

D "  B e '  - U "  8 B '  = ½H;, 8 e ' , ~  - R ' .  8v ,  (2.27) 

with H~, defined by lowering indices in (2.14) and 

R '  = D '  X B"  - E '  × H ' / c  2, (2.28) 

when evaluated in the fluid rest frame (in which, e.g., 83' = ( ' ~ 3 / 2 c ) v "  8v  = O, since v = 0 in the fluid rest 
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frame). Hence, from (2.21) we find 

= ~ , , ~ v -  - n'O' as' - mo c2 an' - ~ n' ] an' - R'  . av. (2.29) 

Next, define the 4-vector with rest-frame components 

( ' ' + e ' )  
R; = c , R' (2.30) 

and evaluate aF ~ from (2.23) in the rest frame 

(aF ' )  ~ = (can' ,  n' av). (2.31) 

Consequently, we have 

g', ( a r , ) , =  ( l "  + e' I 
n ---r \ n' ] a n ' + R ' . a v .  (2.32) 

Then, from (2.25), (2.29), and (2.32) the following variational identity results, in mixed-frame notation: 

R' 
aL0= !H,2..~ v-~F:'"~ --n~-,(aF,)~+mo~aF~_n,O,as ,. (2.33) 

By virtue of its covariant form, (2.33) holds in any Lorentz frame. Thus, the primes can be dropped on 
Lorentz scalar density combinations in (2.33) to give 

a.Lo= ½H~,~aF~ + ( m o ~ - - ~ ,  ) aF~-n 'O 'as .  (2.34) 

The variables ~,  R,, s, and n in (2.34) transform from the fluid rest frame (denoted by prime 
superscript) to the laboratory inertial frame (unadorned) via the following Lorentz transformation rules 
(see, e.g., MMler [18], eq. (IV.25')): 

= 

P ' + e '  v 'R~ , [P '+e"~]  
R~=T c c ' ¥-IR'~ + R I ' - v ~ ) ) = " ( R ° ' R ) '  

(2.35) 
S = S ~ , /'/ ~ " g t / ~  , 

where parallel and perpendicular three-vector components are defined by 

R ~ l = v ( v ' R ' ) / v  z, R ' i = R ' - R ~ f .  (2.36) 

Formulas (2.35) and (2.36) will be useful in section 3 in writing the SREMF equations in 3 + 1 
Hamiltonian form in the laboratory frame. 
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Hamilton's principle. Independent variations with respect to ( F ~, ~, fl, X z, A, ,  s', X z)  in Hamilton's 
principle (2.16) using Lagrangian density (2.17) and variational formula (2.34) now produce the following 
dynamical equations: 

) - 6., + 
\ 

8F ~' • K~:= m0~ ~ -  n--7 = (2 o37a) 

~ : / ~ , = 0 ,  (2.37b) 

8fl : F"s;,=O, (2.37c) 

z (2.370) ~X~ : F X , ~ = 0 ,  

8A~ : H ~ = 0 ,  (2.37e) 

6s' : 0 = (BF") ,¢-  n'O' [by (2.37b)] = F~fl,~- n'O', (2.37f) 

~X z : 0 = (XzF~),~ [by (2.37b)] = V~hz,~. (2.37g) 

The Lagrange multipliers 6, fl, Xz, and X z can be eliminated as in Penfield and Haus [1] by contracting 
/'" with the 4-cuff of (2.37a) to find 

r"( K . . . -  K.,.) = n'O's;.. (2.38) 

Penfield and Haus [1] observe that (2.38) is equivalent to 

Tu~,~ = 0, (2.39) 

with total energy-momentum tensor 

T ~v= T ~ +  T~.( + Tm~t, (2.40) 

where the summands in (2.40) are defined by 

T ~ =  mo~'F ~, 

TO( = F : H  K" - ½( F~xH~a )8 ~', 

(2.41a) 
(2.41b) 
(2.4ac) 

and subscript k denotes kinetic, M denotes Minkowskii, and mat denotes material. 
This completes our review of the Penfield-Haus variational principle. (See also Penfield and Haus [2] for 

further discussion.) Various components of the total energy-momentum tensor (2.40) will reappear in 
section 3, in the course of constructing the Hamiltonian formulation of the SREMF equations. 

2.3. Lie derivative property and Kelvin's theorem 

Eq. (2.38) has the interesting property of being expressible as the Lie derivative of the relativistic 
circulation one-form, K~, dx ~, with respect to the 4-vector feld, F = F~a~. Namely, 

.~r (K~ dx ~) = O'n' d4s '+  d,(K~F~), (2.42a) 
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where 

K~, = rno~ u - R~ , / n ' ,  

D.D.  H o l m  / N e u t r a l  e l ec t romagne t i c  f l u id s  wi th  induct ion  

(2.42b) 

and d 4 is the exterior derivative in Minkowskii space (e.g., d4 f  = f, ,  dx ", for a Lorentz-scalar function f ) .  
See e.g., Schutz [20] for the standard properties used in Lie-derivative manipulations. Physically, eq. (2.42a, 
b) is the covariant form of Kelvin's theorem for relativistic electromagnetic fluids. Taking the Minkowskii 
exterior derivative 8 4 of eq. (2.42a) gives the relativistic Helmholtz equation, cf. Lichnerowicz [17], eq. 
(21-5), 

~CPcd4(Kudx ~) = d 4 ( 0 ' n '  ) A d4s'  , (2.43) 

where /x denotes exterior product. Likewise, since by eq. (2.39), 

~ r S  = F~O~s = O, (2.44) 

we have (since d 4 c o m m u t e s  with ~ r )  

~ c  d4s -=- 0. (2.45) 

Consequently, there is another relativistic advection law, namely 

(2.46) 

by (2.43), (2.45), and the chain rule for Lie derivatives. The physical meaning of eqs. (2.43) and (2.46) will 
become clear when expressed in 3 + 1 form, in a moment. 

In 3 + 1 form, the Lie-derivative property of eq. (2.38) as expressed in eq. (2.42a) persists and its 
interpretation as Kelvin's theorem is more obvious. Taking the ith component of (2.38), using fi~ = V( -  c, v) 
from (2.35) in the laboratory frame, and defining the operator 

d u t-I ,  l F 0 r = n o O~ = yn -d--/' (2.47) 

gives the three-dimensional equation equivalent to the spatial part of (2.38), 

P'+e') 
d ( m ° g v i -  R i / n ' )  = - rn°c2"Y + n '  + v J ( r n ° y v j -  R J / n ' )  i + Y - t O ' s '  

,i , ,i 
(2.48a) 

mo c2 P'+e'+t'R) 
= -  " + n '  - ( r n o Y o j - R j / n ' ) v J + y - a O ' s ' i .  (2.48b) 

Y ,i " 

Eq. (2.48b) may be rewritten in 3 + 1 Lie-derivative form, with d the spatial exterior derivative in three 
dimensions, as 

dx d(mOC  P'+,'+v.R)., • = _ + + v - a O ' d s  '. 
Y 

(2.49) 
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Using the Lorentz formulas (2.35) now simplifies (2.49) in the laboratory frame to the expression 

(Ot '-Jr,~v)C = - d ( ~ )  + y-10 'ds ,  (2.50) 

y R ~  + "y2R~ = y ( D '  X B '  - E '  X H ' / c  2) 1 + Y2( D'  × n '  - E '  X H ' / c  2) II 

=V2[(OxB-E×H/c z) -vX (BxH + D xE)/c2]. (2.52) 

The relation (2.50) with circulation C defined in (2.51) is Kelvin's Theorem for SREMF in the laboratory 
frame. In particular for isentropic fluids, ds = 0 and (2.50) expresses conservation in that case of 
circulation C in (2.51) integrated around closed paths moving with the fluid. The corresponding relation 
for isentropic fluids in Minkowskii space is eq. (2.42) with das' set equal to zero. 

Two immediate consequences of Kelvin's theorem appear when (2.50) is combined with the correspond- 
ing Lie-derivative expressions for the dynamics of n and s, namely 

= 0, 

( 0 t +.LPv)(n d3x) = 0, 

(2.53) 

(2.54) 

where d3x is the three-dimensional volume element in the laboratory frame. First, one finds the advection 
rule 

dO 
dt =0 ,  (2.55) 

for the SREMF "potential vorticity" ~ defined by 

#2 = n - 1 Vs" curl C, (2.56) 

where the 3-vector C appears in (2.51) 

C = m o y W V -  T ( R ~  + y R ~ ) / n .  (2.57) 

The proof of (2.55) uses the standard properties of exterior derivatives and Lie derivatives (see, e.g., Schutz 
[20]). In particular, d z vanishes and d commutes with L,°~, so that one finds (with A denoting exterior 
product, cf. eq. (2.46) in four-dimensional notation) 

( a t +.L~°v)(dC Ads )  = 0. (2.58) 

where: C is the total circulation one-form in three dimensions in the laboratory frame, namely, 

c =  c .  dx :=  [m0ywv-  y(R'  + -dx;  (2.51) 

w is the relativistic specific enthalpy defined in (2.10); and the Lorentz transformation rules (2.26) and 
(2.35) give 
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This follows by direct computation from (2.50), (2.51), and (2.53), using the chain rule for Lie derivatives. 
In coordinate notation (2.58) becomes the local conservation law 

O,(~Ts. curl C) + div [v(Vs" curl C)] = 0. (2.59) 

Then (2.55) follows from (2.59) by the continuity equation (2.37b), or equivalently (2.54). 

Remark. The potential vorticity advection equation (2.55) along with (2.53) and (2.54) imply global 
conservation of the laboratory-frame quantity 

Cv = fod3xnV(~, s), (2.60) 

for an arbitrary function F, provided v is tangential to the boundary 8D of the spatial region of 
integration D. That is, 

OtCF = O, provided v'hloo = O, (2.61) 

for impermeable boundaries. At this stage, the proof that C F in (2.60) is conserved follows merely as a 
computational fact. A Lie algebraic reason for the conservation of CF will be given in the Hamiltonian 
context described in the next section. 

The second consequence of (2.50) is conservation for appropriate boundary and initial conditions of the 
SREMF helicity, A, defined by 

A = fo d3xC" curl C =  ff A dC. (2.62) 

In geometrical language, the proof of helicity conservation for SREMF proceeds by the following 
computation: 

(Ot+,,~v)CA dC [by chain rule] = CA (at +£#o) d C +  [ (S t+~v)C  ] A dC 

[by (2.50)] =C A d(7-10'ds) + [ d ( - C ~  ) +'~-XO'dsl A dc 

= - d [ ~ - d C - C A y - l O ' d s ] + 2 7 - l O ' d s A d C .  (2.63) 

In coordinates, (2.63) becomes, with h = C- curl C, 

- d i v  [ h e + -  C2W curl C - 7 - 1 0 ' C X  ~Ts] + 2,/-~0'I2 8,)~= (2.64) 
[ Y 1 

=: -divF~x ~ + 27-~0'12, (2.65) 

with helicity flux F~x ) given by the square-bracketed term in (2.64). Consequently, with surface element dS 
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and outward normal unit vector ~ on the boundary OD, eq. (2.65) gives 

O,A-=OrfD~.d3x=-~oDF(x)'kdS+fD2"y-aO'~d3x. (2.66) 

Consequently, the SREMF helicity in (2.62) will be preserved for boundary conditions such that the 
surface integral in (2.66) vanishes, and initial conditions of vanishing I2. Note that by (2.55) if ~2 is initially 
zero throughout the domain of flow, it will remain zero. Physically, the helicity A measures the number of 
linkages of the lines of total electromagnetic fluid vorticity, curl C. (See Moffatt [21] for discussions of 
helicity in other fluid theories, e.g., in nonrelativistic magnetohydrodynamics, where it plays a role in the 
dynamo effect.) 

Section summary. In this section we have recounted a version of the Penfield-Haus variational principle 
for SREMF, modified slightly to take A~ as a basic variable. Furthermore, we have studied the 
differential-geometric significance of Kelvin's theorem, both covariantly and after the 3 + 1 split that 
moves us into the laboratory frame. Conservation laws for potential vorticity and helicity have emerged as 
natural consequences of Kelvin's theorem in this differential-geometric setting. The presence of the Lie 
derivatives in Kelvin's theorem (2.50) hints strongly that Lie algebras are present in the underlying 
structure of SREMF. These Lie algebras will appear explicitly in the Hamiltonian formulation of the 
SREMF equations, given in the next section. 

The rest of this paper is devoted to: (1) determining the Hamiltonian formulation of SREMF and 
discussing Lyapunov stability of its equilibrium solutions; (2) finding the relation of this Hamiltonian 
formulation to that of special relativistic magnetohydrodynamics (SRMHD), and taking the nonrelativistic 
(NR) limits of both formulations. In the NR limit, the SREMF Hamiltonian formulation returns to that 
for NREMF given in Holm [12], and the SRMHD Hamiltonian formulation returns to the Hamiltonian 
formulation for NRMHD given in Morrison and Greene [22], which is derived and interpreted mathemati- 
cally in Holm and Kupershmidt [4]. 

3. Hamiitonian formulation of SREMF 

From the action principle (2.16) with Lagrangian density (2.17) one passes to the Hamiltonian 
formulation in the laboratory frame by Legendre transforming with respect to the canonically conjugate 
momenta, defined by 

3L 
P(,)= 3q}(() , IE  { f , s ,  XX, Ai}. (3.1) 

Thus, we find the canonical momentum formulas 

3L 3L 
= = n c ,  P ( s ,  = = 

3L 3L 
(3.2) 
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The corresponding Hamiltonian density is calculated as follows: 

Jt °= Y'~P{,)q!o 1~- L (3.3a) 
I 

[by (2.37a)] = nmoc2~lw - P ' -  D'Ai, o - E ' . O ' - v . ( v R '  l +v2R~I) (3.3b) 

[by (2.52)] = n m o c 2 V w - P ' - A o d i v D + E . O - E ' . D ' - y 2 v , ( D × B - E × n / c 2 ) .  (3.3c) 

Note that ~ =  T °°, by expressions (2.40) and (2.41) for the energy-momentum tensor T ~" evaluated in 
the laboratory frame. Note also that the Clebsch variables no longer appear in (3.3c), so the Hamiltonian 
density is expressed entirely in terms of physical variables. 

In the conventional Hamiltonian formalism, the starting system (2.1) and (2.2) can now be shown to be 
expressible as a Hamiltonian system, 

OfF(P, q) = {H,  F}c ,  (3.4) 

with Hamiltonian H = fd3x ,9~ and canonical (symplectic) Poisson bracket 

{ H, F } = ~ f d3x [ 8F ~H 6H 8F ] 
I -- ~-q'~) ~P(i) ~$q(,r) ~P(i) ' ( 3 . 5 )  

for I ~ (~, s, X z, Ai}. The success of such an approach is guaranteed, since at this stage we are merely 
Legendre-transforming an action principle that we know produces the correct equations from the previous 
section. 

There is, however, a more expeditious procedure; namely, to construct a noncanonical Hamiltonian 
formalism directly in the space of physical variables { M~ = c-tT~ °, n, s, A e, - D  ~ ), by finding a canonical 
map (i.e., a map that preserves Poisson brackets) from the space of canonical variables (P{1), q~Z)) in (3.2) 
to the smaller space of physical variables. Such a map already appears in the Clebsch variational equations 
of the previous section. We define the "circulation vector" from (2.51) and the spatial part of the Clebsch 
equation (2.37a), 

C = - V~ + flWs + )~zVXZ; (3.6) 

whence, we find for the 3-vector momentum density in terms of the canonical variables [see (2.51) and 
(2.52)1 

M i := c-lTi ° = nCi = moTwnoi-  7 ( R ~  +7Rl~)i = - ~_,P~z~q!i t~, 
I 

(3.7a) 

where, now, 

I ~ ( ~ , s ,  X S } ,  

not including the vector potential, A r We also have the remainder of the Clebsch map, 

n = c- lP(~,  s = q(~), A , =  q(&), D i=  -P(.4,). (3.7b, c, d, e) 

In particular, the electromagnetic piece of the Poisson bracket will be unchanged under this map. 
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The Clebsch map (3.7a)-(3.7e) will induce a correct Poisson bracket in the space of physical variables 
(M,,  n, s, A i, - D  i }, provided the following formula holds (see, e.g., Holm and Kupershmidt [4] and Holm 
[161): 

D Z  ( DZ)*, 
q~(R) = ~--~. b.  (3.8) 

where : ~ is the map from the canonical space with coordinates Y, into the physical space with coordinates 

b is the canonical matrix ,-(° o 1 ); 13 is the Hamiltonian matrix in the physical space; qffB)is 
g 

Z; computed 
/ 

by applying the map q~ to each matrix element of R; D Z / D Y  is the Frechet derivative of the variables Z 
with respect to the variables Y; and the symbol t denotes adjoint with respect to the volume measure 
d3x  = dx  1 A dx  2 A d x  3. 

In the present case, the Hamiltonian matrix in the space of physical variables that results from this 
procedure is (see Holm and Kupershmidt [4] and Holm, Kupershmidt, and Levermore [23]) 

-B= 

Mj 
M i M j O  i -3 L O j M  i 

n Ojn 

S S , j  

Ai 0 

D i 0 

n s Aj Oj 

nO i - - s , i  0 0 

0 0 0 0 

0 0 0 0 

o o o 
0 0 3j 0 

(3.9) 

where s i .'= (8s /Ox  i) and the differential operator Oj acts on whatever stands to its right. The Poisson 
bracket corresponding to the Hamiltonian matrix (3.9) is given by 

3F 3H 
{ H , F }  = - f d3x - .m. Z 

= - f d 3 x  ~ / /  (MjO,+OjMi) + - s i  + Ojn+ ' 8,, ,  s.j 

(3.10a) 

_fd x[ F 8H 8H 6F] 
8 D  i 3.,4 i 3 D  i , 

(3 .lOb) 

where, again, 8 i operates on terms to its right. 

Remark on the Lie algebra associated to Poisson bracket (3.10a). The Poisson bracket (3.10a, b) is bilinear, 
skew adjoint, and satisfies the Jacobi identity. (The first two properties are obvious.) We verify the Jacobi 
identity by observing that the Poisson bracket (3.10a) is the natural Poisson bracket on the dual to the 
semidirect product Lie algebra V(~[A°O A 3] (see Holm and Kupershmidt [4]), where V =  V(R 3) repre- 
sents vector fields on R 3 (Xj denotes elements of V) and A k=  Ak(R 3) denotes k-forms on R 3. V acts on 
itself by commutation of vector fields (denoted by [,1) and acts upon A k by Lie derivation, denoted, e.g., 
X(~ (k)) for ~(k) ~ A k. The symbol C) denotes semidirect product, and O the direct sum. The Lie algebraic 
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commutator corresponding to the Poisson bracket (3.10a) is 

[ (X;  ~(°)• ~(3)), (.~; ~(°)¢ ~(3))] = ( [ X , X ] ; ( X ( ~ ' ° ) ) - X ( ~ ' ° ) ) ) ¢ ( X ( ~ ( 3 ) ) - X ( ~ ( 3 ) ) ) ) .  (3.11) 

Dual coordinates are: M~ dual to X~ ~ V; n, to ~(0) ~ A0; and s, to ~(3) ~ A 3. 
Poisson brackets such as (3.10a) that are associated to the dual of a Lie algebra are called "Lie-Poisson" 

brackets in the nomenclature of Marsden et al. [6] and Weinstein [24]. See also Kupershmidt [25] for 
further discussion of such Poisson brackets. 

S R E M F  equations. Using eqs. (3.7a) and (2.52) for M, namely, 

M = m o y w n v -  R,  

i~ ,= .y2 [ (D X B - E X H / c  2) - v X (B  X O + D X E) / c2] ,  

(3.12a) 
(3.12b) 

the Hamiltonian from eq. (3.3c) may be rewritten simply as 

H=fd3x[M.v+moC2n'+e'+E.O-E'.D']. (3.13) 

The variational derivatives of this Hamiltonian are determined from the formula 

~ n  = f d3x [13° ~M + (moe2Wy -1) ~1"1 -Jr (0'n]t -1) ~s + curl H .  8A + E ' S D  

k)'Sv], (3.14) 

which follows from (2.7), (2.10), (2.27), and (2.34). 
Substituting the variational derivatives from (3.14) into the Lie-Poisson bracket (3.10a, b) leads 

immediately to 

Otn = { H, n}  = - ( n v J ) , j ,  

OtS= { H , s }  = - s j v  j, 

OtM,= { H, M, ) = - M j v  j -  ( M  iv J), j - n(moC2W/y).i  + y- 'nO's, i  , 

O,A = = - r ,  

8,D = {H, D} = curl H. 

(3.15a) 

(3.15b) 

(3.15c) 

(3.15d) 

(3.15e) 

Eqs. (3.15a, b) reproduce the subsidiary equations (2.1b, c) of continuity and adiabaticity, respectively. 
Eqs. (3.15d, e) are MaxweU's equations, which carry over unchanged from the action principle, since the 
Poisson map (3.7a-e) does not interfere with the electromagnetic field part of the canonical bracket. Eq. 
(3.15c) can be re-expressed in terms of the circulation vector C~ to recover (2.50) in coordinate form. 
Indeed, substituting M i = nCi from (3.7a) into (3.15c) and using (3.15a) gives 

OtC i+  vJci j + Cjv j =  -(moC2WT-1), i +-  -'O's , T , i ,  (3.16) 

which is (2.50) in coordinate notation. 
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Remark on Casimirs. In (2.60) we derived the conservation law for 

CF= fDd3xnF(I2, s) ,  ~2 = n -1 V s ' c u r l C ,  

C =  M / n  = moyWV-  y2n- l [D X B - E  X H / c  2 -  v X ( B X H + D X E ) / c 2 ] ,  

(3.17) 

for an arbitrary function F of potential vorticity 12 defined in (2.56) and of specific entropy s. The 
conserved functional C~- in (3.17) is a "Casimir" in the sense that 

=0, v6((M, n,s,A,o)).  (3.18) 

That is, C F lies in the kernel of the Lie-Poisson bracket (3.10a) and is, thus, conserved independently of the 
choice of Hamiltonian (or perturbations to a given Hamiltonian) in the space of physical variables. 

The conservation of C F in (3.17) can be understood as resulting from the "gauge symmetry" of the 
Hamiltonian H in (3.13), under canonical transformations generated by C r in the space of canonical 
variables (P(/), q (/)); I ~ (~, s, X 2~, A i ). Such gauge transformations in the Clebsch variables are "trivial" 
in the sense of preserving the values of the physical variables at each point in space. The infinitesimal 
canonical transformations corresponding to C F are expressible in terms of the original symplectic Poisson 
bracket {,)c as 

~P(I) = ( CF, P(I))c = 8 q ( Z )  ' 

8CF 
8q (,) = (CF, q ( ' ) ) c  = 8 p ( t  ) • 

(3.19) 

Since the Hamiltonian (3.13) is expressed solely in terms of the physical variables, by (3.18) the Clebsch 
gauge transformations (3.19) are Hamiltonian symmetries, and their generators C F are conserved. 

Recently, Casimirs such as (3.17) have been used to determine Lyapunov stability criteria for ideal fluid 
and plasma equilibria in a variety of situations, see, e.g., Abarbanel et al. [26, 27], Arnold [28, 29], Holm, 
Marsden, Ratiu, and Weinstein [30, 8], and Holm and Kupershmidt [9]. In this regard, we note that critical 
points of the sum H + CF, i.e., of the energy plus Casimir, will be equilibrium states of the SREMF 
equations in the laboratory frame; since the critical-point condition 8 ( H +  CF)= 0 implies that the 
dynamical variables have no time dependence (see eq. (4.11)). Associating equilibrium states with critical 
points of conserved functionals is of interest because this step is the starting point of the Lyapunov 
stability method, discussed in the next section. 

Section summary. In this section, we have produced the Hamiltonian formulation of SREMF dynamics 
using the Lie-Poisson bracket (3.10a, b) expressed directly in terms of the physical variables. The bracket 
(3.10a) is associated to the dual of the semidirect-product Lie algebra with commutator (3.11). This 
formulation, while not canonical, does reveal an infinite number of conservation laws of physical 
significance, namely the C F in eq. (3.17). These conservation laws (due, in the present setting, to Clebsch 
gauge symmetries of the Penfield-Haus variational principle) are in involution, i.e., are mutually commut- 
ing, but of course are not functionally independent (so complete integrability is not an issue here). The 
initial hint that Lie algebraic structure exists in these equations came from the interpretation of Kelvin's 
theorem (2.50) as a differential-geometric statement. 
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Next, we study Lyapunov stability conditions for EMF equilibria. These conditions will emerge 
naturally on considering critical points of H + CF, where C F given in (3.17) is in the kernel of the 
Lie-Poisson bracket (3.10a). 

4. Lyapunov stability for SREMF equilibria 

4.1. Equilibrium states 

Lyapunov stability of equilibria for the SREMF equations may be studied using the Casimir constants 
of motion C r lying the kernel of the Lie-Poisson bracket (3.10). These Casimirs in three dimensions are 
given by (3.17). To find equilibrium-state relations for the three-dimensional SREMF equations (3.15a-e), 
we first rewrite (3.16) as 

OtC= v x  c u r l C -  V(c2w7 -1 + v ' C )  + y - l O ' v s .  (4.1) 

Taking the curl of (4.1) and using eqs. (3.15a-b) gives 

O tI2 = - v . VI2, (4.2) 

with I2 defined in (3.17). Thus, by (3.15a, b, d, e), (4.1), and (4.2), the equilibrium states (ne, se, ve, De, Be) 
satisfy the following relations: 

curl E e = 0, (4.3a) 

curl H e = 0, (4.3b) 

div (nevc) = 0, (4.3c) 

v c × c u r l C  e V(  c2w eT; l + ve . Ce ) - 1  , = - 7e 0~ VG, (4.3d) 

v e • Vs e = 0, (4.3e) 

v e • V$2 e = 0, (4.3f) 

where C e and ~2 e are given by evaluating the definitions in (3.17) at equilibrium. Also included among the 
equilibrium relations are the nondynamical conditions 

divD e = 0  and divB e = 0 .  (4.4) 

In (4.3a) and (4.3b) the quantities E e and H e are determined by Lorentz-transforming the thermodynamic 
derivatives in (2.7) at equilibrium to the laboratory frame. Scalar multiplication of (4.3d) by v e and use of 
(4.3e) imply [together with (4.3e) and (4.3f)] the existence of three orthogonality relations with v e at 
equilibrium, 

ve 'V ' ( c2we ' y ; l+ve 'Ce )=O,  v e ' V G = O ,  Ve'Vg2e=0. (4.5) 

In turn, these three orthogonality relations imply a functional relationship among the three quantities Se, 
I2 e, and (c2wey -1 + v e • Ce), provided the equilibrium state is nondegenerate, i.e., provided ~Ts e × V$2 e ~ 0 
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and n~f2e% ¢ 0. This implied relationship is assumed to be expressible as a Bernoulli law, namely, as 

C2We~e - 1  "b D e * C e = g ( S e ,  ~2e) , (4.6) 

for a function K, called the Bernoulli function. The equilibrium relation (4.3d) and the Bernoulli relation 
(4.6) then yield 

D e X cur lC  e = ~TK(se ,  ~'~e) -- ~ e l 0 e  t VSe" (4.7) 

Vector multiplication of this equation (4.7) by Vs~ and use of (4.3e-f) determines, for ~ e  ~ 0, that 

fled e = ~2elg i~  V s  e X V Q e ,  (4.8) 

where K~2 .'= OK(s e, ~2e)/012 ¢. Note that the divergence of (4.8) vanishes, as required by the equilibrium 
relation (4.3c). Similarly, vector multiplication of (4.7) by VI2 e and use of (4.8) gives the equilibrium 
relation 

V ~ e  ° curl C e "/~-*0[ - K s 
Vs e • curl C e Ke 

(4.9) 

where K s = OK(se, Oe)/OSe. Finally, the equilibrium relations (4.3a-b) are satisfied when E e and H e are 
expressible as gradients of scalar functions. 

Relations (4.6), (4.8), and (4.9) will be useful in characterizing equilibrium states of SREMF as critical 
points of the following functional, defined in the domain of flow D by 

H c =  H + CF + ?  ̀fon~2d3x + fD[div(t~D) + div (vB)] d3x 

= fo [ M . D +  moc2n'+ r '+ E . D -  E ' . D ' ]  + fD d3x [nF(I2, s ) +  ?`n12 +div  (#O + v s ) l ,  

(4.10) 

where ?  ̀= const, and ~t and v are functions of x, all to be determined. The ?,-term is separated out from F 
for later convenience, and the # and v terms in the integrand are added to impose the nondynamical 
constraints divD = 0 and d i v B = 0 ;  although these latter terms identically vanish for the imposed 
boundary conditions that D and B are tangential on the boundary. It follows from the Hamiltonian 
equations (3.15) and (3.18) that 

O,G= { H +  CF, G } = { H o G  ) . (4.11) 

Hence, critical points of H c are equilibrium states of the motion equations (3.15a-e). The converse 
statement, namely that nondegenerate equilibrium flows of (3.15a-e) satisfying (4.6), (4.8), and (4.9) are 
critical points of H c requires separate analysis, which we now provide. 
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The first variation of H c in (4.10) yields (after integration by parts) 

8Hc  = fo d3x { ( V + n -1WFa × Ws ) " 6 M  + ( moc2wT -1 + F - I2F~ - n -  2M" WF~ x Ws ) 6n 

+ [O'n'¢ -1 + nF  s - WFa" curl (h4n-1)] 8s + ( E  + W t t ) . S D  + ( H  + W v ) ' S B  } 

+ ~D(F~2 + X ) [ S s c u r l ( M / n )  - Ws × (n -1 8 M -  n - Z M S n ) ]  • ~ dS ,  (4.12) 

where ti dS  is the oriented surface element on the boundary, OD. When evaluated at equilibrium, the 
coefficients of the boundary integral will vanish upon choosing 

F ~ ( g e , s e ) l a D  + h = O ,  (4.13) 

which is possible for boundary condition v e • ~10o = 0; since then Fal 0D = const. The coefficients in (4.12) 
of the independent variations (SM, 8n, 8s, 6B, 8D) will each vanish in the interior of domain D for 
equilibrium states, provided the following conditions hold: 

V e + ne  I V F  a × Vs  e = 0, 

moC2W e~'~ 1 + Fe - ~?eF~ - n~2Me" V'F~ X V'se = O, 

0 et ?l eYe-X -I- n e F s -  V F o ' c u r l ( n e l M e ) = 0 ,  

Ee+ V~=O, 

H e +  ~Tv ---- O. 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

(4.14e) 

We now show that each of these conditions holds by virtue of the relations (4.3)-(4.9) for nondegenerate 
SREMF equilibria. Condition (4.14a) can be rewritten as 

nev e = F ~  Ws e × W~2 e, (4.15) 

which is equivalent to the equilibrium state relation (4.8), provided 

Fe~ = I2~lKt~. (4.16) 

Substitution of (4.14a) into (4.14b) gives 

moC2WeTe 1 + n ~ l v e ' M e  + F e - 12eF a = 0, (4.17) 

or equivalently by the Bernoulli relation (4.6) for equilibrium states, 

K + F e - I2eF ~ = 0, (4.18) 

which is a first integral of (4.16) with respect to 9 e. Both relations (4.16) and (4.18) will be satisfied, so that 
both the 8n and 8M coefficients will vanish simultaneously, provided F is determined from K by solving 
(4.18), namely, 

F(B, o ) = B( f f  K( °' z)z~ d z  + q~(o)), (4.19) 
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where q, is an arbitrary function. This is the fundamental relation between the Bernoulli function K and 
the Casimir function F for equilibrium states. 

Substituting (4.18) into (4.14c) now gives the equilibrium state relation (4.9). Finally, critical point 
relations (4.14d) and (4.14e) imply the equilibrium state relations (4.3a) and (4.3b), respectively. This 
proves the following proposition: 

Proposition 4.1. For smooth solutions satisfying v ' ~  = 0, B .~ = 0, and O - ~  = 0 on the boundary, a 
nondegenerate equilibrium state (ve, he, se, De, Be) of the ideal SREMF equations is a critical point of 

He-- H + + XfDn  d3x + fo div ( .O + .e ) l  d3x, (4.20) 

provided relation (4.18) is satisfied between the Bernoulli function K in (4.6) and the Casimir function F 
in (3.17), and eq. (4.13) is satisfied on the boundary. Here the functions/~(x) and p(x) ensure divD = 0 
and divB = 0, respectively, and are related to the equilibrium fields by (4.14d, e); 2~ is a constant; C F is 
defined in (3.17); and H is given in (3.13). 

Remark. For flow on a planar surface of constant specific entropy s, the gradient ~7s becomes a vector 
normal to the plane, which for motion in the xy plane gives ~2 = n - ~  • curl C, up to a constant factor. For 
this case, in the first variation formula (4.12) the variation 8s is absent and Vs is replaced by the unit 
vector £, normal to the plane. 

4.2. Linear Lyapunov stability of equilibrium states 

The linearization of the Hamiltonian system (3.15a-e) around an equilibrium state (ne, s e, v e, D e, Be) 
that is a critical point of its Hamiltonian-plus-Casimir, Hc, is again a Hamiltonian system, whose 
conserved Hamiltonian function is given by one-half the second variation 82Hc, see Holm et al. [8]. 
Consequently, if 82Hc is definite in sign as a quadratic form, then it provides a conserved norm that 
measures deviations from equilibrium of an initial disturbance under the linearized dynamics. Therefore, 
the conditions on the equilibrium flow for 82H c to be definite are sufficient conditions for linear Lyapunov 
stability. That is, a flow that starts near an equilibrium solution satisfying these conditions will remain 
(under the linearized dynamics) within a neighborhood of this solution determined from the norm given by 
82Hc. This is the essence of the Lyapunov stability method we use. This method is based on two main 
ideas: (1) characterization of equilibrium flows as critical points of certain functionals composed of 
constants of motion; and (2) linearized preservation in time of the second variations of these functionals 
considered as norms for linear Lyapunov stability. In most fluid cases, such stability may be strengthened 
to nonlinear Lyapunov stability by using an additional convexity argument, see Holm et al. [8]. 

Using these two main ideas, we now seek the conditions on the nondegenerate equilibrium SREMF 
flows for the second variation 62H c to be definite and, thus, provide a stability norm. 

In the basis (SM, 8n, 8s, 8D, 6B) we have 

8ZHc = fDd3x [Faa(SI2) 2 + Q(SM, Sn,Ss, SD, SB)], (4.21) 

where Q is a rather complicated quadratic form whose leading coefficient in IBM[ 2 is moYeWen e, which is 
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positive; and 8/2 is given by 

8~2 = D ~  (Me, n e, s e, D e, Be) ' (SM,  8n, 8s, 8D, 8B). (4.22) 

In particular, if Q in (4.21) is positive, a sufficient condition for stability (i.e., for positive definiteness of 
82Hc) is that the equilibrium flow should satisfy 

Fasa(fa e, se) = [by (4.15)] nev¢" Vse × Va2e IVsex Vi2el2 > 0 .  (4.23) 

Remark.  For isentropic flow in the xy plane, the sufficient condition for stability (4.23) becomes 

n eve " z × V~2 e -1^ 
iV~2el 2 > 0 ,  w i t h ~ e = n  e z . c u r l ( n ~ M e ) .  (4.24) 

As a corollary, we find for planar shear flows, namely flows satisfying 

M e = M e ( y ) j  , n ~ = n e ( Y ) ,  

that a necessary condition for instability is that the quantity [ n ~- ld(n ~- 1M~)/d y ] have an extremal point as 
a function of the transverse coordinate y; then, the quantity on the left side of (4.24) would violate the 
inequality by passing through zero. This corollary generalizes Rayleigh's [1880] inflection point criterion 
necessary for instability of a shear flow of a planar ideal incompressible fluid to the case of SREMF. 

5. Other canonical maps and reduction to S R M H D  

5.1. The entangling map 

Section 3 shows that SREMF equations possess a Poisson bracket (3.10a, b) dual to a Lie algebra, 
expressible symbolically as 

L1-- {V@[A°m A3I} m (5.1) 

with dual coordinates: M dual to V; n, to A°; s, to A3; D, to a E A1; and A to ~ ~ A2; while the canonical 
D - A part of the bracket is dual to the two-cocycle ~(a ,  ~), which is symplectic. 

Holm [1986] shows that the nonrelativistic EMF equations also possess another Poisson bracket, dual to 
a different Lie algebra, expressible as 

L 2 =  V @ [ A ° ~  A 3 ~ A 1 • A 2] ~ ~0(a,~), (5.2) 

with the same dual coordinates and two-cocycle, except for a redefinition of momentum density, called N 
instead of M and defined below in (5.3a). 

Since the nonrelativistic limit should be regular and structure preserving (Holm and Kupershmidt [31]), 
there must be a canonical map between the Poisson brackets corresponding to L 1 and L 2. This map, 
called the "entangling" map, is related to the difference in definitions of M and N in the Poisson brackets 
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dual to L x or  L2, respectively. This map "entangles" the variables in the Poisson bracket in the sense that 
in going from L 1 to L 2 the variables D and A (dual to the elements of the two-cocycle in L2) no longer 
Poisson-commute with N (dual to vector fields V). The inverse of this map (the "untangling" map) is due 
to Alan Weinstein [32] and Holm and Kupershmidt [36]. The map also can be derived from a constrained 
action principle for MHD, leading to a Clebsch representation analogous to (1.1) but with M replaced by 
N, as given below in (5.3). A useful theorem regarding untangling the canonically-conjugate variables from 
the others in a Lie-Poisson bracket appears in Krishnaprasad and Marsden [33]. 

In passing from the Poisson bracket corresponding to L~ to that for L 2, one uses the appropriate 
modification of the matrix relation (3.8) for the entangling map, 

N = M + D × curl A - A divO, (5.3) 
n=n,  s=s,  A = A ,  D---D, 

resulting in the following Poisson bracket dual to L 2 in (5.2), namely: 

{ H , F }  = - { r F [  8H+nOi~n  8H f d~x ~ (NjOiJ-~J Ni) --S i . 8s 

)sM 8F 
+ rE,.(0JO'- D*0Aj 8Nj + 

[ rF rH r F .  dH ] 
- f ' 

(5.4a) 

(5.4b) 

The variational derivatives of the EMF Hamiltonian H (3.13) in the new basis (5.3) are given by [changing 
variables in (3.14) and integrating by parts] 

t~H = f d3x Iv j 6Nj + (moc2w/y) 6n + (O'n/y) 6s + (curl H *  )" 6A + E * .  6D l, (5.5) 

where, in the notation of Pauli [34], 

E * = E + v × B, (5.6a) 

H * = H - v × D. (5.6b) 

The quantities E* and H * are, respectively, the electric field intensity and magnetic field intensity as 
measured in the fluid frame. This is apparent from the 4-vector relations for the "electric vector" 

e ~ = c - l ~ F ~ = y ( v . E / c , E  + v X B )  

= y (v .E* /c ,  e*)  (5.7) 

and "magnetic vector" 

l ,p ,-  h~=H v g = y ( v . H / c , n - v × D )  

= ~ ( v .  I t  * / c ,  H * ) ,  (5.8) 
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where F ~ is given by (2.12) with E ~ - E  and / t ~  is the dual tensor to H "~ in (2.14). Namely, 

0 HI /C H2 /c  H3 /e  

iq "~ = 0 -- D 3 D 2 
o - : 1  " (5.9) 

Substitution of the variational derivatives of H obtained from (5.5) into the Poisson bracket (5.4a, b) 
readily yields the dynamical equations of SREMF. In particular, we verify (2.1b, c) by inspection just as in 
(3.14a, b). Namely, 

atn = ( H,  n } = - (nvJ),j, (5.10) 

cOts= { H , s  } = - s , j v  j. (5.11) 

Next, Maxwell's equations follow, by 

cOtDi= ( H, Di) = - (  DivJ), j + Dkvi, k + eijkUff,,j 

[by (4.6b)] = [curl (v X D)] i - v i divO + (curl H ) i -  [curl (v x O)] i 

[by (2.15a)] = (curl n )i (5.12) 

and 

cOtA i = ( H, A i } = -a jv ! i  - Ai,jvJ - Ei* 

[by (4.6a)1 = - ( A ? J ) ,  i + oJ( A j , , -  A i , j )  - E i - (1) X B) i  

= - ( A j v J ) ,  i - E,. (5.13) 

Thus, the A-equation changes by a gradient from (3.14d); but its curl, the flux equation (2.15d) remains the 
same when the Poisson bracket (3.10a, b) undergoes the entangling map (5.3) to become (5.4a, b). 

5.2. Reduction of S R E M F  to SRMHD 

Before writing the dynamics of N~, we map the Poisson bracket (5.4a, b)from A to B = curl A, leaving 
the other variables unchanged. Again using the Hamiltonian matrix relation (3.8), we find yet another 
Poisson bracket (see Holm [12]) 

{SF[(NjcOi+cOjNi ) 8H + n O i ~ n S H  ( H , F } = -  ~ - s i  ~ j j  , 8s 

6H l [SF Ojn , F  + + + ~sS,s] 6H 8Nj (5 .laa) 

k , (COjB,_ B % e . )  

6F 6H 8F ~ 8H ] 
- f d3x ~-~ieijkcok-~j -~ ie i jkak-~j] ,  (5.148) 
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where 8ij is the Kronecker delta and e~j k is the totally antisymmetric tensor density in three dimensions. 
The Lie-algebraic interpretation of Poisson bracket (5.14) is given in Holm [12]. Since this map and the 

entangling map are both canonical, all three of the Poisson brackets (3.10), (5.4), and (5.14) share the same 
Casimirs. 

The variational derivatives of H now are given by [cf. eq. (5.5)] 

8H= f d3x[¢~Uj+(moc2w/v)Sn+(O'n/v)Ss+H*.sn+e*.~O]. (5.15) 

Thus, we find by a calculation analogous to (4.12) 

Otni= ( H,  B i )  ---- - - ( n i u J ) , j +  Bkoi, k - (curiE*)/ 

[by (4.6a)] = [curl (v  × B )], - o, div B - (curl E ) ,  - [curl (v X B )]i 

[by (2.15c)] = - (curl E) i ,  (5.16) 

so the flux equation (2.15d) reappears from the Poisson bracket (5.14). The other equations (5.10)-(5.12) 
are unchanged by the map to the Poisson bracket for SREMF (5.14) in the n-representation. 

Finally, the dynamics of Ni is given in conservative form as 

[ ( r H S H  8H 8H 8H ) 
O tNi = i H, Ni ) = - O k n ~-~ + s--~-s + Nj ~-~j + Dj-~--~j + B+ ~-~j - Jff 8i ~ 

~H k ~H Bk ~H ] 
+ NI - D T f f  - 8 a i j 

[by (4.15)1 = - Ok[(moc2wn'C 1 + sO','~ -1 + NjoJ + DjE*J + B j H * J -  gff ) r f  

+ Ni ck - DkEi * - Hi*Bk]. (5.17a) 

Or, equivalently in geometrical form as 

( O t + '~v ) (  n -  lNi dx i  ) = - d 3Hsn + n-  l ~s  dS + ~"  1D(/) °dx) +"~n-lB( n " d x  )" (5.17b) 

In the nonrelativistic limit, eq. (5.17b) reduces to eq. (19b) of Holm [12], see also Calkin [13] for the case of 
nonrelativistic polarized fluids without magnetization. 

When the electric displacement vector D is absent, the momentum density N in (5.3a) becomes [cf. 
(2.51) and (2.52)] 

N = mo'yWnv + ,[2E × H / c  2 + "~2v × (B  × H ) .  (5.18) 

If also B =/~o H and E = - v  × B, then the last term in (5.18) vanishes, and N becomes the momentum 
density for S R M H D  (eq. (17) of Holm and Kupershmidt [35]). The variational derivatives of H in (5.15) 
and, hence, the equations of motion also become those for SRMHD. (See Holm and Kupershmidt [35].) 
Finally, the further limit to nonrelativistic M H D  proceeds regularly and uniformly as c-2 tends to zero, 
thereby recovering the noncanonical Hamiltonian density formulation for N R M H D  originally due to 
Morrison and Greene [22]. 
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Remark .  Lyapunov  stability of equilibria for S R M H D  may be studied using the constants of mot ion for 

the kernel of  the Lie-Poisson  bracket (5.14a) with D absent. (The mathematical  interpretation of the 

resulting bracket  is given in Holm and Kupershmidt  [35].) The equilibria corresponding to 8 ( H  + CF) = 0 

in this case, however, are stationary in the laboratory frame, so relativistic effects are nonexistent for these 

equilibria. 

Section summary .  This section shows how to pass via canonical  maps f rom one Hamil tonian formulat ion 
for S R E M F  to another. In  the second formulation, S R M H D  is contained as a special case: namely, D 

absent,  B = / t 0 H ,  E = - v  x B. Nonrelativistic E M F  and M H D  are then obtained as regular limits of the 
special relativistic theories when c -2  tends to zero. 

6. Conclusions 

This paper  has treated the Hamil tonian structure underlying the theory of ideal special-relativistic 
neutral  electromagnetic fluids with induction. This Hamil tonian  structure has been identified as a 

L i e -Po i s son  structure, dual to a semidirect-product  Lie algebra. Casi rn i rs -  constants of  mot ion  lying in 

the kernel of  this Lie a l g e b r a - h a v e  been identified and used to classify equilibrium solutions and study 

their stability properties. In  particular, an extremum criterion necessary for instability of those equilibria 

has been found  for planar S R E M F  shear flows. Approximate  descriptions of  S R E M F  (particularly 

S R M H D )  have been constructed via the Lie algebraic nature of the Hamil tonian formulat ion of  S R E M F  

and the nonrelativistic limits of these approximations have been determined. 
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